Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(24): 10244-10253, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37226987

RESUMO

Atomic force microscopy paired with infrared spectroscopy (AFM-IR) is a robust technique for investigating complex polymer blends and composites' nanoscale surface topography and chemical composition. In this work, we measured bilayer polymer films to study the effect of laser power, laser pulse frequency, and laser pulse width on the depth sensitivity of the technique. Unique bilayer polystyrene (PS) and polylactic acid (PLA) samples with various film thicknesses and blend ratios were prepared. The depth sensitivity characterized by the amplitude ratio of the resonance bands of PLA and PS was monitored as the thickness of the top barrier layer was incrementally increased from tens of nanometers to hundreds of nanometers. In addition, incrementally increasing the incident laser power resulted in greater depth sensitivity due to the enhanced thermal oscillations generated in the buried layer. In contrast, incrementally increasing the laser frequency increased the surface sensitivity, as indicated by a reduced PLA/PS AFM-IR signal ratio. Finally, the dependence of the depth sensitivity on the laser pulse width was observed. Consequently, by precisely controlling the laser energy, pulse frequency, and pulse width, one can finely control the depth sensitivity of the AFM-IR tool from 10 nm to 100 nm. Our work provides the unique capability to study buried polymeric structures without the need for tomography or destructive etching.


Assuntos
Poliésteres , Polímeros , Microscopia de Força Atômica/métodos , Polímeros/química , Espectrofotometria Infravermelho/métodos , Poliésteres/química , Cintilografia , Poliestirenos/química
2.
Nanoscale ; 15(16): 7365-7373, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37038929

RESUMO

Atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) deciphers surface morphology of thin-film polymer blends and composites by simultaneously mapping physical topography and chemical composition. However, acquiring quantitative phase and composition information from multi-component blends can be challenging using AFM-IR due to the possible overlapping infrared absorption bands between different species. Isotope labeling one of the blend components introduces a new type of bond (carbon-deuterium vibration) that can be targeted using AFM-IR and responds at wavelengths sufficiently shifted toward unoccupied regions (around 2200 cm-1). In this project, AFM-IR was used to probe the surface morphology and chemical composition of three polymer blends containing deuterated polystyrene; each blend is expected to exhibit various degrees of miscibility. AFM-IR results successfully demonstrated that deuterium labeling prevents infrared spectral overlap and enables the visualization of blend phases that could not normally be distinguished by other scanning probe techniques. The nanoscale domain composition was resolved by fast infrared spectrum analysis. Overall, we presented isotope labeling as a robust approach for circumventing obstacles preventing the quantitative analysis of multiphase systems by AFM-IR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...